Import necessary Llibraries
import pandas as pd

Load datasets into DataFrames

df_orders = pd.read_csv("C:/Users/suneh/Downloads/orders.csv")

df_order_products = pd.read_csv("C:/Users/suneh/Downloads/order_products.cs

Display the first few rows of both DataFrames
print("First few rows of df_orders:")
display(df_orders.head())

First few rows of df_orders:

order_id customer_id order_dow order hour_of day days_since_prior_or«

0 20HUSWKKX9XC J3MPRZEX 4.0
1 VBX3BUG6LVYOT R69IKH7XQ 4.0
2 POCGUIRDYNIZ TKY3AGOE 5.0
3 BT1GH8NQOY9DBF 5FS7WI90 2.0
4 D2RZ7J9N40OHN 6LOKFO8H 5.0

14.0

14.0

13.0

11.0

14.0

oK ____________________________J

print("\nFirst few rows of df_order_products:")
display(df_order_products.head())

First few rows of df_order_products:

order._id product_id quantity unit_price
0 TZYVOJHIX14K 0QQNAB5GK4 5 3.84
1 ONBB6B7Y0ZVG RD7LCX95LR 2 34.72
2 T82MXR8ONOYI DAJQS7THHQW 1 17.10
3 X3JKVCWSMOCV V45HC2WDGA 5 7.66
4 KCX24HB2PHON Z7XQNHH1OP 3 49.42

Results Explanation

1. Review of df_orders and df_order_products:

e df_orders.head() shows the first few rows of the orders dataset, which

contains information like order_id, customer_id , order_dow (day of the

customer _id
MRY7YWVY
VC3CKQVW

VZ2MJ3GF
THYGFX9R

LMEVQXKO

week), order_hour_of_day , and whether a coupon was used.

2

1

e df_order_products.head() reveals the first few rows of the product
purchase records, showing order_id , product_id, quantity , and the

price per unit of each product in the order.

2. Structure of DataFrames using info() function:

e df_orders.info() returns:

= Number of entries (rows) and columns in the dataset.
= Column names and their respective data types (like intée4 , floaté4,
object).
= Non-null values per column, which helps identify missing data if any.
e df_order_products.info() provides similar insights for the product-level
dataset, confirming that multiple products can be linked to the same

order_id .
By reviewing the info() results, we can determine:

¢ Data Quality: Are there any missing values that need handling?

¢ Data Types: Are the data types appropriate (e.g., object for categorical
variables or int for numerical ones)?

¢ Data Size: How large the datasets are, which helps in planning the next
analysis steps.

Step 1: Find how many missing values each column contains
print("Missing values before cleaning:")
print(df_orders.isnull().sum())

Missing values before cleaning:

order_id 64
customer_id 69
order_dow 68
order_hour_of day 55
days_since_prior_order 62
coupon_use 72

dtype: int64

1]

Step 2: Replace missing values in 'order_id' with 'unknown_order
df_orders['order_id'].fillna('unknown_order', inplace=True)

C:\Users\suneh\AppData\Local\Temp\ipykernel 24824\2541313010.py:2: FutureWar
ning: A value is trying to be set on a copy of a DataFrame or Series through
chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work
because the intermediate object on which we are setting values always behave
s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd
f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins
tead, to perform the operation inplace on the original object.

df_orders['order_id'].fillna('unknown_order', inplace=True)

Step 3: Replace missing values in 'customer_id' with 'unknown_customer'
df_orders['customer_id'].fillna('unknown_customer', inplace=True)

C:\Users\suneh\AppData\Local\Temp\ipykernel 24824\523455206.py:2: FutureWarn
ing: A value is trying to be set on a copy of a DataFrame or Series through
chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work
because the intermediate object on which we are setting values always behave
s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd
f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins
tead, to perform the operation inplace on the original object.

df_orders['customer_id'].fillna('unknown_customer', inplace=True)

Step 4: Replace missing values in 'days_since_prior_order' with the colum
mean_days = df_orders['days_since_prior_order'].mean()
df_orders['days_since_prior_order'].fillna(mean_days, inplace=True)

C:\Users\suneh\AppData\Local\Temp\ipykernel 24824\3124581164.py:3: FutureWar
ning: A value is trying to be set on a copy of a DataFrame or Series through
chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work
because the intermediate object on which we are setting values always behave
s as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'd
f.method({col: value}, inplace=True)' or df[col] = df[col].method(value) ins
tead, to perform the operation inplace on the original object.

df_orders['days_since_prior_order'].fillna(mean_days, inplace=True)

Step 5: Check missing values after replacements
print("Missing values after replacements:")
print(df_orders.isnull().sum())

Missing values after replacements:

order_id 0
customer_id 0
order_dow 68
order_hour_of day 55
days_since_prior_order 0
coupon_use 72

dtype: int64

Step 6: Drop rows with any remaining missing values
df_orders.dropna(inplace=True)

Verify if there are any remaining missing values
print("Missing values after dropping rows with missing values:")
print(df_orders.isnull().sum())

Missing values after dropping rows with missing values:
order_id 0

customer_id

order_dow
order_hour_of_day
days_since_prior_order
coupon_use

dtype: int64

OO OO0

Explanation of Code:

1. Checking Missing Values:
We used df_orders.isnull().sum() to display the number of missing

values in each column.
2. Handling Missing Values:

® Replaced missing values in the order_id column with
"unknown_order' .
® Replaced missing values in the customer_id column with
"unknown_customer' .
® Replaced missing values in the days_since_prior_order column with
the mean value of that column using the mean() function.
3. Re-verifying Missing Values:
After the replacements, we checked again for missing values. If any are left, we

proceeded to drop those rows using dropna() .

4. Final Check:
After dropping rows with missing values, we verified that no missing values

remain.

This process ensures that missing data is either filled with appropriate values or
removed, depending on the context.

Step 1: Create a DataFrame for orders with coupon use
df_orders_coupon = df_orders[df_orders['coupon_use'] == 'yes']
df_orders_coupon.head()

order_id customer_id order dow order hour_of day days_since_prior_

2 POCGUIRDYNIZ TKY3AGOE 5.0 13.0
13 56ASBZ5F5DKQ V3IYCE83 6.0 9.0
16 AK1YW438GPZB 8AW3776P 0.0 19.0
20 CQ6LVV3IHO007U 1MSMWAOU 4.0 20.0
21 3616ESD8Q132 LIGFOUOZ 1.0 19.0
o >

Step 2: Calculate the mean value of 'days_since_prior_order' for coupon u
mean_days_coupon = df_orders_coupon['days_since prior_order'].mean()
print(f"Mean days since prior order (coupon used): {mean_days_coupon:.2f}")

Mean days since prior order (coupon used): 9.93

Step 3: Create a DataFrame for orders without coupon use
df_orders_no_coupon = df_orders[df_orders['coupon_use'] ==
df_orders_no_coupon.head()

no']

order_id customer_id order dow order hour_of day days_since_prior_c

0 20HUSWKKX9XC J3AMPRZEX 4.0 14.0
1 VBX3BUG6LVYO1 R6IKH7XQ 4.0 14.0
3 BT1GH8NQY9DBF 5FS7WI90 2.0 11.0
4 D2RZ7J9N4OHN 6LOKFO8H 5.0 14.0
5 WUPRXZY20AYG EEIOSKAP 6.0 20.0
X ____________________________J >

Step 4: Calculate the mean value of 'days_since_prior_order' for non-coup
mean_days_no_coupon = df_orders_no_coupon['days_since_prior_order'].mean()
print(f"Mean days since prior order (no coupon used): {mean_days_no_coupon:

Mean days since prior order (no coupon used): 18.72

Explanation:

Selecting DataFrames by Coupon Use: We created two DataFrames:
df_orders_coupon (where coupon_use is 'yes') and df_orders_no_coupon (where

coupon_use is 'no’).

Calculating Mean Days Since Prior Order: We used the mean() function to compute

the average days_since_prior_order for both groups.

Analysis: Is the Use of Coupon Associated with
Higher/Lower Order Frequency?

* Mean Days (Coupon Used): [Insert Value from Code Output]
* Mean Days (No Coupon Used): [Insert Value from Code Output]

Interpretation:

¢ |f the mean days since prior order for coupon users is lower than that for
non-coupon users, it suggests that offering coupons increases order
frequency (customers place orders more frequently).

* Conversely, if the mean days are higher for coupon users, it implies that
customers do not necessarily order more frequently despite the availability of
coupons.

Based on the results:
® [Insert your conclusion based on the values]

Example: "Since the mean days since prior order are lower for coupon users, the
data suggests that offering coupons is associated with higher order frequency."

Group by 'order_dow' and count the total number of orders for each day
orders_per_day = df_orders.groupby('order_dow')['order_id'].count()

Display the result as a Pandas Series
print("Total number of orders for each day of the week:")
print(orders_per_day)

Total number of orders for each day of the week:

order_dow

0.0 4669
1.0 1618
2.0 744
4.0 1561
5.0 2989
6.0 3851

Name: order_id, dtype: int64

Explanation: Grouping by 'order_dow': We use the groupby() function on the
order_dow column to divide the orders based on the day of the week.

Counting Orders: For each group (day of the week), we use the count() function on
the order_id column to count the total number of orders.

Output: The result is displayed as a Pandas Series showing the total number of
orders for each day of the week, with the days represented by integers (0 for
Sunday, 1-5 for Monday to Friday, and 6 for Saturday)

Create the 'revenue' column by multiplying 'quantity' with 'unit_price'
df_order_products['revenue'] = df_order_products['quantity'] * df_order_prc
df_order_products.head()

order_id product_id quantity unit_price customer_id revenue
0 TZYV9JHIX14K 0QQNAB5GK4 5 3.84 MRY7YWVY 19.20
1 ONBB6B7Y0ZVG RD7LCX95LR 2 3472 VC3CKQVW 69.44
2 T82MXR80ONOQYI DAJQS7HHQW 1 17.10 VZ2MJ3GF 17.10
3 X3JKVCWSMICV V45HC2WDGA 5 7.66 THYGFX9R 38.30
4 KCX24HB2PHON Z7XQNHH10P 3 4942 LMEVQXKO 148.26

Display the first few rows of the updated DataFrame
print("First few rows of the updated df_order_products DataFrame:")
display(df_order_products.head())

First few rows of the updated df_order_products DataFrame:

order_id product_id quantity unit_price customer_id revenue
0 TZYV9JHJX14K O0QQNAB5GK4 5 3.84 MRY7YWVY 19.20
1 ONBB6B7Y0ZVG RD7LCX95LR 2 34.72 VC3CKQVW 69.44
2 T82MXR80ONOYI DAJQS7HHQW 1 17.10 VZ2MJ3GF 17.10
3 X3JKVCWSMICV V45HC2WDGA 5 7.66 THYGFX9R 38.30
4 KCX24HB2PHON Z7XQNHH10P 3 4942 LMEVQXKO 148.26

Calculate the total revenue by summing the 'revenue' column
total_revenue = df_order_products['revenue'].sum()

Display the total revenue
print(f"Total revenue: ${total_revenue:.2f}")

Total revenue: $8744724.59

Explanation: *Creating the ‘revenue' Column:

The revenue for each row is calculated as: revenue = quantity unit_price. This new
column is added directly to the DataFrame df_order_products. Displaying the First
Few Rows:

*We used the head() function to verify that the new column has been added
correctly.

*Calculating the Total Revenue:

The total revenue is calculated by summing the values in the revenue column using

sum().

Select all rows related to the customer with id '©421MWMT'
df_cust_inquiry = df_order_products[df_order_products['customer_id'] == '04

Display the content of the 'df cust _inquiry' DataFrame
df _cust_inquiry.head()

order_id product_id quantity unit_price customer_id revenue
25733 SDSGLO50UESG HUW6839533 3 40.94 0421MWMT 122.82
45016 SDSGLO50UESG (09DBUJNRUV 3 18.55 0421MWMT 55.65
76788 SDSGLOS50UESG GFC4XNH9DI 4 3.59 0421MWMT 14.36
90021 SDSGLO50UESG IZRQFKDBMY 5 3.92 0421MWMT 19.60

Display the content of the 'df _cust_1inquiry' DataFrame
print("Customer's purchase records (ID: @421MWMT):")
display(df_cust_inquiry)

Customer's purchase records (ID: ©421MWMT):

order_id product_id quantity unit_price customer_id revenue

25733 SDSGLO50UESG HUW6839533 3 4094 0421MWMT 122.82
45016 SDSGLO50UESG 09DBUJNRUV 3 18.55 0421MWMT 55.65
76788 SDSGLOS0UESG GFC4XNH9DI 4 3.59 0421MWMT 14.36
90021 SDSGLO50UESG IZRQFKDBMY 5 3.92 0421MWMT 19.60

Calculate the total purchase amount by summing the 'revenue' column
total _purchase_amount = df_cust_inquiry['revenue'].sum()

Display the total purchase amount
print(f"Total purchase amount for customer '©421MWMT': ${total_purchase_amc

Total purchase amount for customer '©421IMWMT': $212.43

Explanation:

*Selecting the Customer’s Purchase Records:

*We use boolean indexing to filter all rows in df_order_products where customer_id
matches '042TMWMT". The filtered data is assigned to a new DataFrame called

df_cust_inquiry. Displaying the Purchase Records:

*The display() function shows the relevant rows to verify the customer’s purchase

history. Calculating the Total Purchase Amount:

We sum the values in the revenue column to get the total dollar amount spent by

the customer.

