Import the Dataset and Describe Summary Statistics

This step involves:

- 1. Importing the house_prices.csv dataset into a Pandas DataFrame.
- 2. Using the .describe() function to summarize the dataset's statistics.

```
import pandas as pd

# Import the dataset
data = pd.read_csv("C:/Users/suneh/Downloads/house_prices.csv")

#Show data
data.head()
```

Out[2]: Size (sq ft)		Size (sq ft)	Number of Rooms	Neighborhood	Year Built	Price
	0	3532	4	Suburb	1976	1195126.0
	1	3407	5	Downtown	2010	1412375.0
	2	2453	5	Countryside	1968	797476.0
	3	1635	3	Downtown	1986	523051.0
	4	1563	2	Suburb	1970	532291.0

In [4]: # Display summary statistics
data.describe()

Out[4]:		Size (sq ft)	Number of Rooms	Year Built	Price
	count	500.000000	500.00000	500.000000	5.000000e+02
	mean	2447.264000	3.05600	1986.268000	8.452926e+05
	std	915.927716	1.39598	21.171695	3.295506e+05
	min	807.000000	1.00000	1950.000000	7.771900e+04
	25%	1672.750000	2.00000	1968.000000	5.945020e+05
	50%	2449.000000	3.00000	1987.000000	8.447255e+05
	75 %	3237.750000	4.00000	2004.000000	1.105304e+06
	max	3991.000000	5.00000	2022.000000	1.586530e+06

In [5]: data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, 0 to 499
Data columns (total 5 columns):
    Column
                    Non-Null Count Dtype
--- -----
                     -----
                                    ----
                                    int64
    Size (sq ft)
                   500 non-null
0
 1
    Number of Rooms 500 non-null
                                    int64
                    500 non-null
    Neighborhood
                                    object
 3
    Year Built
                     500 non-null
                                    int64
    Price
                     500 non-null
                                    float64
dtypes: float64(1), int64(3), object(1)
memory usage: 19.7+ KB
```

One-Hot Encoding for the Categorical Variable

The dataset contains a categorical variable Neighborhood . We'll apply one-hot encoding with Number of Categories - 1 columns added for encoding. This ensures that we avoid multicollinearity.

```
In [15]: # One-hot encoding for 'Neighborhood'
data_encoded = pd.get_dummies(data, columns=['Neighborhood'], drop_first=Tr

# Display the first few rows of the encoded DataFrame
data_encoded.head()
```

Out[15]:		Size (sq ft)	Number of Rooms	Year Built	Price	Neighborhood_Downtown	Neighborhood_Sub
	0	3532	4	1976	1195126.0	0	
	1	3407	5	2010	1412375.0	1	
	2	2453	5	1968	797476.0	0	
	3	1635	3	1986	523051.0	1	
	4	1563	2	1970	532291.0	0	
	4						

Correlation Matrix

We compute the correlation matrix to identify relationships between variables, focusing on strong correlations with Price.

```
In [20]: import seaborn as sns
import matplotlib.pyplot as plt
```

```
# Calculate the correlation matrix
correlation_matrix = data_encoded.corr()

In [22]: correlation_matrix
```

Out[22]:		Size (sq ft)	Number of Rooms	Year Built	Price	Neighborhoo
	Size (sq ft)	1.000000	0.013477	-0.011671	0.908024	
	Number of Rooms	0.013477	1.000000	-0.032377	0.231002	
	Year Built	-0.011671	-0.032377	1.000000	0.169842	
	Price	0.908024	0.231002	0.169842	1.000000	
	Neighborhood_Downtown	0.002287	-0.084240	0.001649	0.003634	

0.089848 -0.044649 0.021090

The strongest indicator of house price is Size (sq ft) at 0.908024.

0.018282

Neighborhood_Suburb

Create Age Variable and Remove Year Built

The age of the house in 2024 is calculated as 2024 - Year Built . The Year Built column will then be removed.

```
In [39]: # Calculate house age
   data_encoded['Age'] = 2024 - data_encoded['Year Built']

# Drop 'Year Built'
   data_encoded.drop(columns=['Year Built'], inplace=True)

# Display the first few rows of the modified DataFrame
   data_encoded.head()
```

•		Size (sq ft)	Number of Rooms	Price	Neighborhood_Downtown	Neighborhood_Suburb	A
	0	3532	4	1195126.0	0	1	
	1	3407	5	1412375.0	1	0	
	2	2453	5	797476.0	0	0	
	3	1635	3	523051.0	1	0	
	4	1563	2	532291.0	0	1	
	4						

Linear Regression Model

Out[39]:

We train a linear regression model with the following steps:

- 1. Split the dataset into training and testing sets (80% train, 20% test, random state=18).
- 2. Train the model using the training set.
- 3. Display the model's intercept and coefficients.

```
In [49]: # Display model coefficients and intercept
print("Intercept:", model.intercept_)
print("Coefficients:", dict(zip(X.columns, model.coef_)))
```

```
Intercept: -16218.657343078754
Coefficients: {'Size (sq ft)': 327.3131214474899, 'Number of Rooms': 52678.0
1938654492, 'Neighborhood_Downtown': 15460.415653697008, 'Neighborhood_Suburb': 10388.111962154166, 'Age': -2941.3611239281527}
```

Model Evaluation

We evaluate the model using Root Mean Squared Error (RMSE) on the test set.

```
In [55]: # Predict on the test set
y_pred = model.predict(X_test)

# Calculate RMSE
rmse = mean_squared_error(y_test, y_pred, squared=False)
print("Root Mean Squared Error (RMSE):", rmse)

# Comment on prediction accuracy
```

Root Mean Squared Error (RMSE): 105189.89535216476

```
C:\Users\suneh\anaconda3\Lib\site-packages\sklearn\metrics\_regression.py:48
3: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed
in 1.6. To calculate the root mean squared error, use the function'root_mean
_squared_error'.
   warnings.warn(
```

Predictions for New Properties

Given the following property features:

- Property 1: 678 sq ft, 1 room, Downtown, built in 2019
- Property 2: 1550 sq ft, 4 rooms, Suburb, built in 1972
- Property 3: 2509 sq ft, 3 rooms, Suburb, built in 2004

We predict their selling prices using the trained model.

```
Neighborhood_Downtown Neighborhood_Suburb Age
             (sq ft)
                        Rooms
                                                      1
                                                                                5
         0
               678
                             1
                                                                           0
          1
              1550
                             4
                                                     0
                                                                           1
                                                                               52
         2
                             3
              2509
                                                     0
                                                                           1
                                                                               20
In [81]: new_listings.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 3 entries, 0 to 2
        Data columns (total 5 columns):
             Column
                                    Non-Null Count
                                                    Dtype
             _____
         0
             Size (sq ft)
                                    3 non-null
                                                    int64
             Number of Rooms
         1
                                   3 non-null
                                                    int64
         2
             Neighborhood Downtown 3 non-null
                                                    int64
             Neighborhood_Suburb 3 non-null
                                                    int64
         4
                                    3 non-null
             Age
                                                    int64
        dtypes: int64(5)
        memory usage: 252.0 bytes
In [83]: |# Align columns with training data
         new_listings = new_listings.reindex(columns=X.columns, fill_value=0)
         # Predict prices for the new listings
         predicted prices = model.predict(new listings)
         # Display the predicted prices
         print(predicted_prices)
```

[259131.26841892 559266.0919646 914604.9120119]

Import the Dataset and Describe Summary Statistics

This step involves:

Out[79]:

Size

Number of

- 1. Importing the cancer_data.csv dataset into a Pandas DataFrame.
- 2. Using the .describe() function to summarize the dataset's statistics.

```
In [97]: import pandas as pd

# Import the dataset
data2 = pd.read_csv("C:/Users/suneh/Downloads/cancer_data (1).csv")

#Show data
data2.head()
```

	Age	Smoking Status	Tumor Size (cm)	Cancer Stage	Treatment Type	Survived
0	64	Smoker	1.45	Stage I	Chemotherapy	1
1	67	Smoker	3.02	Stage II	Immunotherapy	1
2	84	Smoker	1.13	Stage I	Surgery	0
3	87	Smoker	1.12	Stage I	Radiation	1
4	87	Smoker	8.63	Stage IV	Radiation	0

In [99]: # Display summary statistics
data2.describe()

Out[99]:

Out[97]:

	Age	Tumor Size (cm)	Survived
count	500.000000	500.000000	500.000000
mean	54.836000	5.258220	0.488000
std	20.465355	2.800046	0.500357
min	20.000000	0.510000	0.000000
25%	38.000000	2.937500	0.000000
50%	55.000000	5.105000	0.000000
75%	73.000000	7.822500	1.000000
max	89.000000	10.000000	1.000000

One-Hot Encoding for Categorical Variables

The dataset contains several categorical variables (Smoking Status, Cancer Stage, Treatment Type). We'll apply one-hot encoding for each variable with Number of Categories - 1 columns added.

```
In [109... # One-hot encoding for categorical variables
    categorical_vars2 = ['Smoking Status', 'Cancer Stage', 'Treatment Type']
    data_encoded2 = pd.get_dummies(data2, columns=categorical_vars2, drop_first
    # Display the first few rows of the encoded DataFrame
    data_encoded2.head()
```

	Age	Tumor Size (cm)	Survived	Smoking Status_Smoker	Cancer Stage_Stage II	Cancer Stage_Stage III	Cancer Stage_Stage IV
0	64	1.45	1	1	0	0	0
1	67	3.02	1	1	1	0	0
2	84	1.13	0	1	0	0	0
3	87	1.12	1	1	0	0	0
4	87	8.63	0	1	0	0	1

Logistic Regression Model

We train a logistic regression model with the following steps:

- 1. Split the dataset into training and testing sets (80% train, 20% test, random state=18).
- 2. Train the model using the training set.
- 3. Display the model's intercept and coefficients.

```
In [117...
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# Define features and target variable
X = data_encoded2.drop(columns=['Survived'])
y = data_encoded2['Survived']

# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, ra

# Train Logistic regression model
log_reg2 = LogisticRegression(max_iter=1000)
log_reg2.fit(X_train, y_train)

# Display intercept and coefficients
print("Intercept:", log_reg2.intercept_)
print("Coefficients:", dict(zip(X.columns, log_reg2.coef_[0])))
```

Intercept: [4.87474078]
Coefficients: {'Age': -0.04177729994934706, 'Tumor Size (cm)': -0.5529144370
828158, 'Smoking Status_Smoker': 0.2097765311753643, 'Cancer Stage_Stage I
I': 0.3042544502070155, 'Cancer Stage_Stage III': 0.16277538462039728, 'Cancer Stage_Stage IV': -0.15137750235594935, 'Treatment Type_Immunotherapy': 0.
2633742471457567, 'Treatment Type_Radiation': 0.20610678832857524, 'Treatment Type Surgery': -0.5095647174745114}

Model Evaluation

- 1. Generate the confusion matrix based on predictions from the logistic regression model.
- 2. Calculate:
 - Precision (Fraction of predicted survivors who actually survived).
 - Recall (Fraction of actual survivors who were correctly predicted).
 - Accuracy.

```
In [129...
          from sklearn.metrics import confusion_matrix, precision_score, recall_score
          # Predictions on the test set
          y_pred = log_reg2.predict(X_test)
          # Confusion matrix
          conf_matrix = confusion_matrix(y_test, y_pred)
          print("Confusion Matrix:\n", conf_matrix)
          # Performance metrics
          precision = precision_score(y_test, y_pred)
          recall = recall_score(y_test, y_pred)
          accuracy = accuracy_score(y_test, y_pred)
          print(f"Precision: {precision}")
          print(f"Recall: {recall}")
          print(f"Accuracy: {accuracy}")
         Confusion Matrix:
          [[42 11]
          [11 36]]
```

Precision: 0.7659574468085106 Recall: 0.7659574468085106

Accuracy: 0.78

Predict Survival for New Patients

Two new patients:

- 1. Age: 34, Smoking Status: Smoker, Tumor Size: 0.5 cm, Cancer Stage: Stage II, Treatment Type: Immunotherapy.
- 2. Age: 87, Smoking Status: Non-Smoker, Tumor Size: 5 cm, Cancer Stage: Stage I, Treatment Type: Surgery.

The data is pre-processed similarly before making predictions.

```
In [137... # New patient data
   new_patients = pd.DataFrame({
```

```
'Age': [34, 87],
'Tumor Size (cm)': [0.5, 5],
'Smoking Status_Non-Smoker': [0, 1],
'Cancer Stage_Stage II': [1, 0],
'Cancer Stage_Stage III': [0, 0],
'Treatment Type_Immunotherapy': [1, 0],
'Treatment Type_Radiation': [0, 0],
'Treatment Type_Surgery': [0, 1]
})

new_patients.head()
```

Out[137...

	Age	Tumor Size (cm)	Smoking Status_Non- Smoker	Cancer Stage_Stage II	Cancer Stage_Stage III	Treatment Type_Immunotherapy	Tyl
0	34	0.5	0	1	0	1	
1	87	5.0	1	0	0	0	

```
In [139... # Align columns with training data
    new_patients = new_patients.reindex(columns=X.columns, fill_value=0)

# Predict probabilities
    predicted_probs = log_reg2.predict_proba(new_patients)[:, 1]
    print("Predicted Probabilities of Survival:\n", predicted_probs)
```

Predicted Probabilities of Survival: [0.97692103 0.11567693]

5-Nearest Neighbors (5NN)

We repeat steps c-e with the 5-Nearest Neighbors algorithm, comparing its performance with logistic regression.

```
In [143... from sklearn.neighbors import KNeighborsClassifier

# Train 5NN model
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)

# Predict and evaluate
y_pred_knn = knn.predict(X_test)
conf_matrix_knn = confusion_matrix(y_test, y_pred_knn)

precision_knn = precision_score(y_test, y_pred_knn)
recall_knn = recall_score(y_test, y_pred_knn)
accuracy_knn = accuracy_score(y_test, y_pred_knn)

print("Confusion Matrix (5NN):\n", conf_matrix_knn)
```

```
print(f"Precision (5NN): {precision_knn}")
print(f"Recall (5NN): {recall_knn}")
print(f"Accuracy (5NN): {accuracy_knn}")

# Predictions for new patients
predicted_probs_knn = knn.predict_proba(new_patients)[:, 1]
print("Predicted Probabilities of Survival (5NN):\n", predicted_probs_knn)

Confusion Matrix (5NN):
[[40 13]
[11 36]]
Precision (5NN): 0.7346938775510204
Recall (5NN): 0.7659574468085106
Accuracy (5NN): 0.76
Predicted Probabilities of Survival (5NN):
[1. 0.]
```

Performance Comparison

Based on the provided metrics for Logistic Regression and 5NN, here's the comparison table: Metric Logistic Regression 5NN Precision 0.766 0.735 Recall 0.766 0.766 Accuracy 0.78 0.76

Analysis

Precision:

Logistic Regression performs slightly better (0.766) compared to 5NN (0.735). This means Logistic Regression is better at ensuring that patients predicted to survive 5 years actually do. Recall:

Both models have identical recall (0.766), meaning they are equally effective at identifying patients who actually survive. Accuracy:

Logistic Regression (0.78) has a slight edge over 5NN (0.76) in overall correct predictions. Complexity and Interpretability:

Logistic Regression is easier to interpret as it provides coefficients for each feature, indicating their impact on survival prediction. 5NN, on the other hand, is computationally more expensive, especially as the dataset size grows, since it calculates distances for each prediction.

Preferred Model

Logistic Regression is preferred because:

It has better precision and accuracy. It is computationally efficient and interpretable, making it suitable for understanding the relationship between

features and survival.

In []:	