Import the Dataset and Describe Summary Statistics

This step involves:

1. Importing the house_prices.csv dataset into a Pandas DataFrame.
2. Using the .describe() function to summarize the dataset's statistics.
import pandas as pd

Import the dataset
data = pd.read_csv("C:/Users/suneh/Downloads/house_prices.csv")

#Show data
data.head()

Size (sq ft) Number of Rooms Neighborhood Year Built Price
0 3532 4 Suburb 1976 1195126.0
1 3407 5 Downtown 2010 1412375.0
2 2453 5 Countryside 1968 797476.0
3 1635 3 Downtown 1986 523051.0
4 1563 2 Suburb 1970 532291.0

Display summary statistics
data.describe()

Size (sq ft) Number of Rooms Year Built Price
count 500.000000 500.00000 500.000000 5.000000e+02
mean 2447.264000 3.05600 1986.268000 8.452926e+05

std 915927716 1.39598 21.171695 3.295506e+05
min 807.000000 1.00000 1950.000000 7.771900e+04
25% 1672.750000 2.00000 1968.000000 5.945020e+05
50% 2449.000000 3.00000 1987.000000 8.447255e+05
75% 3237.750000 4.00000 2004.000000 1.105304e+06
max 3991.000000 5.00000 2022.000000 1.586530e+06

data.info()

<

class 'pandas.core.frame.DataFrame'>

RangeIndex: 500 entries, 0@ to 499
Data columns (total 5 columns):

Column Non-Null Count Dtype
@ Size (sq ft) 500 non-null int64
1 Number of Rooms 500 non-null inte4
2 Neighborhood 500 non-null object
3 Year Built 500 non-null int64
4 Price 500 non-null float64

dtypes: float64(1), int64(3), object(1)
memory usage: 19.7+ KB

One-Hot Encoding for the Categorical Variable

The dataset contains a categorical variable Neighborhood . We'll apply one-hot
encoding with Number of Categories - 1 columns added for encoding. This
ensures that we avoid multicollinearity.

One-hot encoding for 'Neighborhood'
data_encoded = pd.get_dummies(data, columns=['Neighborhood'], drop_first=Tr

Display the first few rows of the encoded DataFrame
data_encoded.head()

Size Number

(sq of Ye?r Price Neighborhood_Downtown Neighborhood_Sub
Built
ft) Rooms
0 3532 4 1976 1195126.0 0
1 3407 5 2010 1412375.0 1
2 2453 5 1968 797476.0 0
3 1635 3 1986 523051.0 1
4 1563 2 1970 5322910 0

<4 G 4

Correlation Matrix

We compute the correlation matrix to identify relationships between variables,
focusing on strong correlations with Price .

import seaborn as sns
import matplotlib.pyplot as plt

Calculate the correlation matrix
data_encoded.corr()

correlation_matrix =

correlation_matrix

Size (sq ft)

Number of Rooms

Year Built

Price
Neighborhood_Downtown

Neighborhood_Suburb

Size (sq
ft)
1.000000
0.013477
-0.011671
0.908024
0.002287

0.018282

Number
of
Rooms

0.013477

1.000000

-0.032377

0.231002

-0.084240

0.089848

Year
Built

-0.011671

-0.032377

1.000000

0.169842

0.001649

-0.044649

4 GE—

Price

0.908024

0.231002

0.169842

1.000000

0.003634

0.021090

The strongest indicator of house price is Size (sq ft) at 0.908024.

Create Age Variable and Remove Year Built

Neighborhoo

The age of the house in 2024 is calculated as 2024 - Year Built .The Year
Built column will then be removed.

Calculate house age
data_encoded["‘Age'] =

Drop 'Year Built'

2024 - data_encoded['Year Built']

data_encoded.drop(columns=['Year Built'], inplace=True)

Display the first few rows of the modified DataFrame

data_encoded.head()

4

Size
(sq
ft)

3532
3407
2453
1635

1563

Number
of
Rooms

4

5

w

N

Price

1195126.0

1412375.0

797476.0

523051.0

532291.0

Neighborhood_Downtown

Neighborhood_Suburb A

4 G >

Linear Regression Model

We train a linear regression model with the following steps:

from sklearn.model_selection import train_test_split

1. Split the dataset into training and testing sets (80% train, 20% test, random
state=18).

2. Train the model using the training set.
3. Display the model's intercept and coefficients.

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

#
X

y

#

Define features and target variable

Split the data

X _train, X test, y train, y test = train_test split(X, y, test size=0.2, rc

data_encoded.drop(columns=['Price'])
data_encoded['Price’]

Train the Llinear regression model
model = LinearRegression()

model.fit(X_train, y_train)

4

LinearRegression

éLinearRegression()

Display model coefficients and intercept
print("Intercept:", model.intercept)
print("Coefficients:", dict(zip(X.columns, model.coef)))

Intercept: -16218.657343078754

Coefficients: {'Size (sq ft)': 327.3131214474899, 'Number of Rooms': 52678.0
1938654492, 'Neighborhood_Downtown': 15460.415653697008, 'Neighborhood_Subur
b': 10388.111962154166, 'Age': -2941.3611239281527}

Model Evaluation

We evaluate the model using Root Mean Squared Error (RMSE) on the test set.

Predict on the test set
y_pred = model.predict(X_test)

Calculate RMSE
rmse = mean_squared_error(y_test, y pred, squared=False)
print("Root Mean Squared Error (RMSE):", rmse)

Comment on prediction accuracy

Root Mean Squared Error (RMSE): 105189.89535216476

C:\Users\suneh\anaconda3\Lib\site-packages\sklearn\metrics_regression.py:48
3: FutureWarning: 'squared' is deprecated in version 1.4 and will be removed
in 1.6. To calculate the root mean squared error, use the function'root_mean
_squared_error'.

warnings.warn(

Predictions for New Properties

Given the following property features:

* Property 1: 678 sq ft, 1 room, Downtown, built in 2019
® Property 2: 1550 sq ft, 4 rooms, Suburb, built in 1972
® Property 3: 2509 sq ft, 3 rooms, Suburb, built in 2004

We predict their selling prices using the trained model.

New property data
new _listings = pd.DataFrame({
'Size (sq ft)': [678, 1550, 2509],
‘Number of Rooms': [1, 4, 3],
'Neighborhood_Downtown': [1, @, 0],
‘Neighborhood Suburb': [0, 1, 1],
"Age': [2024 - 2019, 2024 - 1972, 2024 - 2004]
})

new_listings.head()

Size Number of Neighborhood_Downtown Neighborhood_Suburb Age

(sq ft) Rooms
0 678 1 1 0 5
1 1550 4 0 1 52
2 2509 3 0 1 20

new_listings.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, @ to 2
Data columns (total 5 columns):

Column Non-Null Count Dtype
@ Size (sq ft) 3 non-null int64
1 Number of Rooms 3 non-null int64
2 Neighborhood_Downtown 3 non-null int64
3 Neighborhood_Suburb 3 non-null int64
4 Age 3 non-null int64

dtypes: int64(5)
memory usage: 252.0 bytes

Align columns with training data
new_listings = new_listings.reindex(columns=X.columns, fill value=0)

Predict prices for the new Listings
predicted_prices = model.predict(new_listings)

Display the predicted prices
print(predicted_prices)

[259131.26841892 559266.0919646 914604.9120119 |

Import the Dataset and Describe Summary Statistics

This step involves:

1. Importing the cancer_data.csv dataset into a Pandas DataFrame.
2. Using the .describe() function to summarize the dataset's statistics.
import pandas as pd

Import the dataset
data2 = pd.read_csv("C:/Users/suneh/Downloads/cancer_data (1).csv")

#Show data
data2.head()

Smoking Tumor Size Cancer Treatment

Age Status (cm) Stage Type Survived
0 64 Smoker 1.45 Stage| Chemotherapy 1
1 67 Smoker 3.02 Stage Il Immunotherapy 1
2 84 Smoker 1.13 Stage | Surgery 0
3 87 Smoker 1.12 Stage | Radiation 1
4 87 Smoker 8.63 Stage IV Radiation 0

Display summary statistics
data2.describe()

Age Tumor Size (cm) Survived

count 500.000000 500.000000 500.000000
mean 54.836000 5.258220 0.488000
std 20.465355 2.800046 0.500357
min 20.000000 0.510000 0.000000
25% 38.000000 2.937500 0.000000
50% 55.000000 5.105000 0.000000
75% 73.000000 7.822500 1.000000
max 89.000000 10.000000 1.000000

One-Hot Encoding for Categorical Variables

The dataset contains several categorical variables (Smoking Status , Cancer
Stage , Treatment Type). We'll apply one-hot encoding for each variable with
Number of Categories - 1 columns added.

One-hot encoding for categorical variables
categorical vars2 = ['Smoking Status', 'Cancer Stage', 'Treatment Type']
data_encoded2 = pd.get_dummies(data2, columns=categorical_vars2, drop_first

Display the first few rows of the encoded DataFrame
data_encoded2.head()

Tumor Cancer Cancer Cancer

Age Size Survived Sta tu:rS“n‘:lc:::.e?' Stage_Stage Stage_Stage Stage_Stage
(cm) 1] v

0 o4 1.45 1 1 0 0 0
1 67 3.02 1 1 1 0 0
2 84 1.13 0 1 0 0 0
3 87 1.12 1 1 0 0 0
4 87 8.63 0 1 0 0 1
4 D b

Logistic Regression Model

We train a logistic regression model with the following steps:

1. Split the dataset into training and testing sets (80% train, 20% test, random
state=18).

2. Train the model using the training set.

3. Display the model's intercept and coefficients.

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

Define features and target variable
X = data_encoded2.drop(columns=['Survived'])
y = data_encoded2['Survived']

Split the data
X_train, X _test, y train, y test = train_test split(X, y, test size=0.2, rc

Train logistic regression model
log reg2 = LogisticRegression(max_iter=1000)
log reg2.fit(X_train, y_train)

Display intercept and coefficients
print("Intercept:", log_reg2.intercept_)
print("Coefficients:", dict(zip(X.columns, log reg2.coef [0])))

Intercept: [4.87474078]

Coefficients: {'Age': -0.04177729994934706, 'Tumor Size (cm)': -0.5529144370
828158, 'Smoking Status_Smoker': 0.2097765311753643, 'Cancer Stage Stage I
I': 0.3042544502070155, 'Cancer Stage Stage III': 0.16277538462039728, 'Canc
er Stage Stage IV': -0.15137750235594935, 'Treatment Type_Immunotherapy': 0.
2633742471457567, 'Treatment Type_Radiation': 0.20610678832857524, 'Treatmen
t Type_Surgery': -0.5095647174745114}

Model Evaluation

1. Generate the confusion matrix based on predictions from the logistic
regression model.
2. Calculate:
® Precision (Fraction of predicted survivors who actually survived).
® Recall (Fraction of actual survivors who were correctly predicted).
® Accuracy.

from sklearn.metrics import confusion_matrix, precision_score, recall score

Predictions on the test set
y pred = log reg2.predict(X_test)

Confusion matrix
conf_matrix = confusion_matrix(y_test, y pred)
print("Confusion Matrix:\n", conf_matrix)

Performance metrics

precision = precision_score(y_test, y_pred)
recall = recall _score(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)

print(f"Precision: {precision}")
print(f"Recall: {recall}")
print(f"Accuracy: {accuracy}")

Confusion Matrix:

[[42 11]

[11 36]]
Precision: 0.7659574468085106
Recall: 0.7659574468085106
Accuracy: 0.78

Predict Survival for New Patients

Two new patients:

1. Age: 34, Smoking Status: Smoker, Tumor Size: 0.5 cm, Cancer Stage: Stage ||,
Treatment Type: Immunotherapy.

2. Age: 87, Smoking Status: Non-Smoker, Tumor Size: 5 cm, Cancer Stage: Stage |,
Treatment Type: Surgery.

The data is pre-processed similarly before making predictions.

New patient data
new_patients = pd.DataFrame({

'Age': [34, 87],
"Tumor Size (cm)': [@.5, 5],
'Smoking Status_Non-Smoker': [0, 1],
"Cancer Stage_Stage II': [1, @],
"Cancer Stage_Stage III': [0, 0],
'Treatment Type_Immunotherapy': [1, 0],
'Treatment Type_ Radiation': [0, 0],
'"Treatment Type_Surgery': [0, 1]

)

new_patients.head()

Tumor Smoking Cancer Cancer Treatment
Age Size Status_Non- Stage_Stage Stage_Stage Tvoe Immunothera T
(cm) Smoker | mYPe- S

0 34 05 0 1 0 !

1 87 5.0 1 0 0 !
4 G b

Align columns with training data
new_patients = new_patients.reindex(columns=X.columns, fill value=0)

Predict probabilities
predicted_probs = log reg2.predict_proba(new_patients)[:, 1]
print("Predicted Probabilities of Survival:\n", predicted_probs)

Predicted Probabilities of Survival:
[0.97692103 0.11567693]

5-Nearest Neighbors (5NN)

We repeat steps c-e with the 5-Nearest Neighbors algorithm, comparing its
performance with logistic regression.

from sklearn.neighbors import KNeighborsClassifier

Train 5NN model
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)

Predict and evaluate
y_pred_knn = knn.predict(X_test)
conf_matrix_knn = confusion_matrix(y_test, y_ pred_knn)

precision_knn = precision_score(y_test, y pred_knn)
recall_knn = recall score(y_test, y pred_knn)

accuracy_knn = accuracy_score(y_test, y pred_knn)

print("Confusion Matrix (5NN):\n", conf_matrix_knn)

print(f"Precision (5NN): {precision_knn}")
print(f"Recall (5NN): {recall_knn}")
print(f"Accuracy (5NN): {accuracy knn}")

Predictions for new patients
predicted_probs_knn = knn.predict_proba(new_patients)[:, 1]
print("Predicted Probabilities of Survival (5NN):\n", predicted_probs_knn)

Confusion Matrix (5NN):
[[40 13]
[11 36]]
Precision (5NN): ©.7346938775510204
Recall (5NN): 0.7659574468085106
Accuracy (5NN): 0.76
Predicted Probabilities of Survival (5NN):
[1. o.]

Performance Comparison

Based on the provided metrics for Logistic Regression and SNN, here’s the comparison table: Metric Logistic
Regression SNN Precision 0.766 0.735 Recall 0.766 0.766 Accuracy 0.78 0.76

Analysis
Precision:

Logistic Regression performs slightly better (0.766) compared to 5NN (0.735). This
means Logistic Regression is better at ensuring that patients predicted to survive 5
years actually do. Recall:

Both models have identical recall (0.766), meaning they are equally effective at
identifying patients who actually survive. Accuracy:

Logistic Regression (0.78) has a slight edge over 5NN (0.76) in overall correct
predictions. Complexity and Interpretability:

Logistic Regression is easier to interpret as it provides coefficients for each feature,
indicating their impact on survival prediction. 5NN, on the other hand, is
computationally more expensive, especially as the dataset size grows, since it

calculates distances for each prediction.

Preferred Model

Logistic Regression is preferred because:

It has better precision and accuracy. It is computationally efficient and
interpretable, making it suitable for understanding the relationship between

features and survival.

